Primary cultures of chick osteocytes retain functional gap junctions between osteocytes and between osteocytes and osteoblasts.
نویسندگان
چکیده
The inaccessibility of osteocytes due to their embedment in the calcified bone matrix in vivo has precluded direct demonstration that osteocytes use gap junctions as a means of intercellular communication. In this article, we report successfully isolating primary cultures of osteocytes from chick calvaria, and, using anti-connexin 43 immunocytochemistry, demonstrate gap junction distribution to be comparable to that found in vivo. Next, we demonstrate the functionality of the gap junctions by (1) dye coupling studies that showed the spread of microinjected Lucifer Yellow from osteoblast to osteocyte and between adjacent osteocytes and (2) analysis of fluorescence replacement after photobleaching (FRAP), in which photobleaching of cells loaded with a membrane-permeable dye resulted in rapid recovery of fluorescence into the photobleached osteocyte, within 5 min postbleaching. This FRAP effect did not occur when cells were treated with a gap junction blocker (18alpha-glycyrrhetinic acid), but replacement of fluorescence into the photobleached cell resumed when it was removed. These studies demonstrate that gap junctions are responsible for intercellular communication between adjacent osteocytes and between osteoblasts and osteocytes. This role is consistent with the ability of osteocytes to respond to and transmit signals over long distances while embedded in a calcified matrix.
منابع مشابه
Strain uses gap junctions to reverse stimulation of osteoblast proliferation by osteocytes
Identifying mechanisms by which cells of the osteoblastic lineage communicate in vivo is complicated by the mineralised matrix that encases osteocytes, and thus, vital mechanoadaptive processes used to achieve load-bearing integrity remain unresolved. We have used the coculture of immunomagnetically purified osteocytes and primary osteoblasts from both embryonic chick long bone and calvariae to...
متن کاملRoles of gap junctions and hemichannels in bone cell functions and in signal transmission of mechanical stress.
Gap junctions formed by connexins (Cx) play an important role in transmitting signals between bone cells such as osteoblasts and osteoclasts, cells responsible for bone formation and bone remodeling, respectively. Gap junction intercellular communication (GJIC) has been demonstrated to mediate the process of osteoblast differentiation and bone formation. Furthermore, GJIC propagates Ca2+ signal...
متن کاملA Trabecular Bone Explant Model of Osteocyte-Osteoblast Co-Culture for Bone Mechanobiology.
The osteocyte network is recognized as the major mechanical sensor in the bone remodeling process, and osteocyte-osteoblast communication acts as an important mediator in the coordination of bone formation and turnover. In this study, we developed a novel 3D trabecular bone explant co-culture model that allows live osteocytes situated in their native extracellular matrix environment to be inter...
متن کاملStatic and dynamic osteogenesis.
Two subsequent different types of bone formation, we respectively named static osteogenesis (SO) and dynamic osteogenesis (DO), were observed in intramembranous ossification centers of newborn rabbits and chick embryos as well as during bone repair. In all cases the onset of intramembranous ossification is characterized by the appearance, around the vessels, of pluristratified cords of unexpect...
متن کاملGeneration and function of osteocyte dendritic processes.
Osteocytes in vivo possess a distinctive morphology – that of dendricity – connecting osteocyte to osteocyte creating the osteocyte syncytium and also connecting osteocytes with cells on the bone surface (see Figure 1). It is thought that bone fluid surrounding the dendrite within the canaliculi is responsible for the transmission of mechanical strain through fluid flow shear stress. Dendrites ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada
دوره 13 2 شماره
صفحات -
تاریخ انتشار 2007